# PHYS5150 - PLASMA PHYSICS 

LECTURE 5-SINGLE PARTICLE MOTION IN AN UNIFORM B FIELD

Sascha Kempf*<br>G2B41, University of Colorado, Boulder

Spring 2023

## Single particle motion in an uniform B field

## PLASMA PARAMETERS

Composition: ions and electrons
NUMBER DENSITY: ions and electrons in laboratory plasmas $\sim 10^{8}-10^{14} \mathrm{~cm}^{-3}$
TEmperature: measured in electron Volts $(e \mathrm{~V}), 1 e \mathrm{~V}=11,600 \mathrm{~K}$
$e \cdot U=\frac{m}{2} v^{2}=\mathrm{k}_{\mathrm{B}} T=e \cdot 1 \mathrm{~V}$
$1 e \mathrm{~V}=1.602 \cdot 10^{-19} \mathrm{C} \cdot \mathrm{J} / \mathrm{C}$
$1 e \mathrm{~V}=1.602 \cdot 10^{-19} \mathrm{~J}$
TIME SCALE: plasma frequency $\omega_{p}=2 \pi f_{p}$
VELOCITY SCALE: thermal velocity $v_{t h}=\sqrt{\frac{8 k T}{\pi m}}$

## 1 SINGLE PARTICLE MOTION IN A UNIFORM B FIELD

Before we deal with the really messy stuff, it is beneficial to study the motion of single charged particles in uniform electric and magnetic fields. As a first step let's investigate the case of a charged grain moving in an uniform magnetic field.

You will show in your homework assignment that if only a Lorentz force

$$
\mathbf{F}_{L}=q(\mathbf{v} \times \mathbf{B})
$$

acts on a charged particle, its kinetic energy $T=\frac{1}{2} m \mathbf{v}^{2}$ is an integral of motion. We now split $\mathbf{v}$ into its components parallel and orthogonal to the magnetic field:

$$
\mathbf{v}=\mathbf{v}_{\|}+\mathbf{v}_{\perp}
$$

[^0]and similarly
$$
T=\frac{1}{2} m \mathbf{v}_{\|}^{2}+\frac{1}{2} m \mathbf{v}_{\perp}^{2}=T_{\|}+T_{\perp} .
$$

Because of $\mathbf{v} \times \mathbf{B}=\mathbf{v}_{\|} \times \mathbf{B}+\mathbf{y}_{\perp} \times \mathbf{B}=\mathbf{v}_{\|} \times \mathbf{B}, T_{\|}$is an integral of motion, and $T_{\perp}$ is an integral of motion, too.

Then, the equation of motion for the component $\mathbf{v}_{\perp}$

$$
m \frac{\mathrm{~d} \mathbf{v}_{\perp}}{\mathrm{d} t}=q \mathbf{v}_{\perp} \mathbf{B}=m \frac{\mathbf{v}_{\perp}^{2}}{\rho_{c}}
$$

describes a circular motion around the so-called guiding center. The radius

$$
\begin{equation*}
\rho_{c}=\frac{m v_{\perp}}{|q| B} \tag{1}
\end{equation*}
$$

is the cyclotron or Lamor radius. The angular frequency of the cyclotron motion

$$
\begin{equation*}
\omega_{c}=\frac{\nu_{\perp}}{\rho_{c}}=\frac{|q| B}{m} \tag{2}
\end{equation*}
$$

is called the cyclotron or Lamor frequency.

Note that the gyromotion of a charge constitutes a current loop

$$
j=\frac{q}{\Delta t}=q \frac{\omega_{c}}{2 \pi}=\frac{q}{2 \pi} \frac{q B}{m}=\frac{q^{2}}{2 \pi} \frac{B}{m} .
$$

In this case, there is a magnetic moment

$$
\mu=\text { area } \cdot \text { current. }
$$

The area enclosed by the loop current is

$$
A_{\text {loop }}=\pi \rho_{c}^{2}=\pi \frac{m^{2} v_{\perp}^{2}}{|q|^{2} B^{2}},
$$

and thus

$$
\mu=j \cdot A_{\text {loop }}=\frac{q^{2}}{2 \pi} \frac{B}{m} \pi \frac{m^{2} v_{\perp}^{2}}{|q|^{2} B^{2}}=\frac{m v_{\perp}^{2}}{2 B},
$$

and finally

$$
\begin{equation*}
\mu=\frac{T_{\perp}}{B} \text {. } \tag{3}
\end{equation*}
$$

Note that for both, the electrons and the ions, the direction of $\mu$ is opposite to the applied magnetic field $\mathbf{B}$. This means that $\mu$ resulting from the plasma particles'
gyromotion weakens the applied field - the plasma is diamagnetic.

2 UNIFORMB AND E FIELDS

### 2.1 E field parallel to $B$

An $E$ field parallel to $\mathbf{B}$ would only affect $\mathbf{v}_{\|}$and result in a guiding center motion parallel to $\mathbf{B}$.

### 2.2 E field perpendicular to $B$

This case is more interesting than $\mathbf{E} \| \mathbf{B}$ and will lead us to new insights. Here, the equations of motion are

$$
\begin{aligned}
m \frac{\mathrm{~d}}{\mathrm{~d} t} \mathbf{v}_{\|} & =0 \\
m \frac{\mathrm{~d}}{\mathrm{~d} t} \mathbf{v}_{\perp} & =q\left(\mathbf{E}+\mathbf{v}_{\perp} \times \mathbf{B}\right)
\end{aligned}
$$

We now transform the equations into an inertial frame moving at constant speed $v_{E}$ perpendicular to $\mathbf{B}$. The fields in the new reference system are then

$$
\begin{aligned}
& \mathbf{E}^{\prime}=\mathbf{E}+\mathbf{v}_{E} \times \mathbf{B} \\
& \mathbf{B}^{\prime}=\mathbf{B}
\end{aligned}
$$

the velocity components are

$$
\begin{aligned}
\mathbf{v}_{\|}^{\prime} & =\mathbf{v}_{\|} \\
\mathbf{v}_{\perp}^{\prime} & =-\mathbf{v}_{E}+\mathbf{v}_{\perp}
\end{aligned}
$$

and the new equation of motion for $\mathbf{v}_{\perp}$ is

$$
m \frac{\mathrm{~d}}{\mathrm{~d} t} \mathbf{v}_{\perp}^{\prime}=q\left(\mathbf{E}^{\prime}+\mathbf{v}_{\perp}^{\prime} \times \mathbf{B}^{\prime}\right)
$$

We now choose $\mathbf{v}_{E}$ such that $\mathbf{E}^{\prime}$ vanishes, i.e.

$$
\begin{aligned}
\mathbf{E}^{\prime} & =\mathbf{E}+\mathbf{v}_{E} \times \mathbf{B}=0 \quad \mid \times \mathbf{B} \\
& =\mathbf{E} \times \mathbf{B}+\left(\mathbf{v}_{E} \times \mathbf{B}\right) \times \mathbf{B}=\mathbf{E} \times \mathbf{B}+\left(\mathbf{v}_{E} \cdot \mathbf{B}\right) \mathbf{B}-(\mathbf{B} \cdot \mathbf{B}) \mathbf{v}_{E}
\end{aligned}
$$

and finally

$$
\begin{equation*}
\mathbf{v}_{E}=\frac{\mathbf{E} \times \mathbf{B}}{B^{2}} . \tag{4}
\end{equation*}
$$

This is the velocity of the particle's guiding center drift caused by a uniform electric field perpendicular to $\mathbf{B}$.


In the prime system the particle performs a simple gyromotion because its equation of motion is simply

$$
m \frac{\mathrm{~d}}{\mathrm{~d} t} \mathbf{v}_{\perp}^{\prime}=q\left(\mathbf{E}^{\prime}+\mathbf{v}_{\perp}^{\prime} \times \mathbf{B}^{\prime}\right)=q\left(\mathbf{v}_{\perp}^{\prime} \times \mathbf{B}^{\prime}\right)
$$

while in its initial system drifts the guiding center of the gyrating particle in $\mathbf{E} \times \mathbf{B}$ direction with the speed $v_{E}$.

The $\mathbf{E} \times \mathbf{B}$ drift has some remarkable properties. All particles drift at the same speed regardless of their charge, temperature, and mass. Furthermore, the drift motion does not constitute a current. Note also that in plasma physics the frame of rest is the one in which the electric field vanishes.

## 3 MOTION IN AN NONUNIFORM B FIELD

### 3.1 $\quad$ B Drift

We are interested in what happens when the particle moves in a nonuniform magnetic field. Lets assume that the $\mathbf{B}$ filed is aligned with the z axis, i.e. $\mathbf{B}=\left(0,0, B_{z}\right)$, and that the density of the magnetic field lines increases in $x$ direction, i.e. $\nabla \mathbf{B} \| \mathbf{x}$. We would expect a drift in y direction, because the radius of the gyromotion increases with decreasing magnetic field strength.

We now want to determine the average drift velocity due to the field gradient. Because the motion in x -direction is periodic

$$
\oint F_{x} \mathrm{~d} t=q \oint v_{y} B_{z} \mathrm{~d} t=0
$$

We assume the field gradient to be small, which allows us to expand $B_{z}$ around its guiding center

$$
B_{z}(x) \approx B_{z}\left(x_{0}\right)+\frac{\partial B_{z}}{\partial x}\left(x-x_{0}\right)
$$

and get

$$
\begin{aligned}
0 & =\oint\left\{B_{z}\left(x_{0}\right)+\frac{\partial B_{z}}{\partial x}\left(x-x_{0}\right)\right\} v_{y} \mathrm{~d} t \\
& =B_{z}\left(x_{0}\right) \underbrace{\oint v_{y} \mathrm{~d} t}_{\Delta y}+\frac{\partial B_{z}}{\partial x} \oint\left(x-x_{0}\right) v_{y} \mathrm{~d} t
\end{aligned}
$$

We now make use of that

$$
\oint\left(x-x_{0}\right) v_{y} \mathrm{~d} t=\oint\left(x-x_{0}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} \mathrm{~d} t=\oint\left(x-x_{0}\right) \mathrm{d} y
$$

is approximately the area of a circle with radius $\rho_{c}$, and the second integral becomes

$$
\oint\left(x-x_{0}\right) v_{y} \mathrm{~d} t \approx-\frac{q}{|q|} \pi \rho_{c}^{2} .
$$

Thus

$$
\begin{aligned}
0 & =B_{z} \Delta y-\frac{\partial B_{z}}{\partial x} \frac{q}{|q|} \pi \rho_{c}^{2} \\
\Delta y & =\frac{\frac{\partial B_{z}}{\partial x}}{B_{z}} \frac{q}{|q|} \pi \rho_{c}^{2} .
\end{aligned}
$$

During one gyration cycle $\Delta t=\frac{2 \pi}{\omega_{c}}$ the particle drifts by $\Delta y$ in y direction, which provides us with the drift speed

$$
v_{G}=\frac{\Delta y}{\Delta t}=\frac{\partial B_{z}}{\partial x} \frac{1}{B_{z}} \frac{q}{|q|} \frac{1}{2} \omega_{c} \rho_{c}^{2}=\frac{T_{\perp}}{q B_{z}}\left[\frac{1}{B_{z}} \frac{\partial B_{z}}{\partial x}\right]
$$

where we have used that

$$
T_{\perp}=\frac{m}{2} \omega_{c}^{2} \rho_{c}^{2}
$$

The general expression for the gradient B drift velocity is

$$
\begin{equation*}
\mathbf{v}_{G}=\frac{T_{\perp}}{q B}\left[\frac{\hat{\mathbf{B}} \times \nabla \mathbf{B}}{B}\right] \tag{5}
\end{equation*}
$$

The direction of the grad B drift is in opposite direction for positive and negative charges and causes therefore a current.

### 3.2 Curvature Drift

A charged particle moving along a curved magnetic field line will experience a centrifugal force

$$
F_{C}=m \frac{\mathbf{v}_{\|}^{2}}{R_{C}}
$$

where $R_{C}$ is the field curvature. This leads to a curvature drift

$$
\mathbf{v}_{C}=-m \frac{\mathbf{v}_{\|}^{2}}{R_{C}^{2}}\left[\frac{\hat{\mathbf{R}}_{C} \times \hat{\mathbf{B}}}{q B^{2}}\right]
$$

or after introducing the kinetic energy of the parallel motion $T_{\|}=\frac{1}{2} m \mathbf{v}_{\|}^{2}$

$$
\begin{equation*}
\mathbf{v}_{C}=2 \frac{T_{\|}}{q B}\left[\frac{\hat{\mathbf{B}} \times \hat{\mathbf{R}}_{C}}{R_{C}}\right] . \tag{6}
\end{equation*}
$$

The direction of the curvature drift is in opposite direction for positive and negative charges and causes therefore a current.


[^0]:    *sascha.kempf@colorado.edu

